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Abstract. Estimation of the intensity function of spatial point processes is a fundamental problem. In
this paper, we interpret the Delaunay tessellation field estimator recently introduced by Schaap and Van
de Weygaert as an adaptive kernel estimator and give explicit expressions for the mean and variance.
Special attention is paid to Poisson processes.
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1 Introduction

Let Φ be a simple point process on Rd whose moment measure M exists and is locally finite.
Make the further assumption that M is absolutely continuous with respect to Lebesgue measure,
so that

M(A) =

∫

A

λ(x) dx

for some measurable function λ(x) ≥ 0 for every bounded Borel set A. The goal is to estimate
λ(·) based on a realisation Φ ∩ A of Φ in some open, convex and bounded Borel set A 6= ∅.

The classic approach is to use the Berman–Diggle (1989) estimator

̂λBD(x0) :=
N(b(x0, h) ∩ A)

|b(x0, h) ∩ A|
, (1)

for x0 ∈ A. Here the notation N(B) is used for the cardinality of Φ ∩ B for bounded Borel sets
B ⊂ Rd, and |B| for its Lebesgue mass. The bandwidth h > 0 controls the amount of smoothing.
Note that as A is open, one never divides by zero. By construction, the expectation of (1) is
M(b(x0, h) ∩ A)/|b(x0, h) ∩ A|.

Although (1) is a natural estimator, it does not necessarily preserve the total mass in W , nor
is it based on a (generalised) weight function. In this paper we consider alternative estimators
that do possess these two properties.

2 Mass preserving kernel estimation

Note that (1) can be regarded as a kernel estimator with kernel 1{||x− x0|| < h}/|b(x0, h)∩A|.
The edge correction term |b(x0, h) ∩ A| is ‘global’ as it does not depend on x. Using a ‘local’
edge correction instead suggests the estimator

λ̂K(x0) :=
∑

x∈Φ∩A

1{||x − x0|| < h}

|b(x,h) ∩ A|
(2)

based on the kernel kh(x0 | x) = 1{||x − x0|| < h}/|b(x, h) ∩ A| for x0 ∈ A. Note that (2) is
well-defined and coincides with (1) for x0 such that b(x0, 2h) ⊆ A. In contrast to (1), however,
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(2) is based on a proper weight function as

∫

A

kh(x0 | x) dx0 =

∫

A

1{||x − x0|| < h}

|b(x, h) ∩ A|
dx0 ≡ 1

for all x ∈ A. Consequently, (2) is mass preserving, that is,
∫

A
λ̂K(x0) dx0 = N(A) almost

surely.
The first two moments of (2) are given by

E

[

λ̂K(x0)
]

=

∫

A∩b(x0,h)

λ(x)

|b(x, h) ∩ A|
dx;

E

[

λ̂K(x0)
2
]

=

∫

(b(x0,h)∩A)2

ρ(2)(x, y)

|b(x, h) ∩ A| |b(y, h) ∩ A|
dx dy +

∫

b(x0,h)∩A

λ(x)

|b(x, h) ∩ A|2
dx,

provided the second order factorial moment measure of Φ exists as a locally finite measure that
is absolutely continuous with respect to the product Lebesgue measure with Radon–Nikodym
derivative ρ(2).

3 Local versus global edge correction

Neither (1) nor (2) is universally better in terms of integrated mean squared error than its
competitor. To see this, first consider a homogeneous Poisson process Φ with intensity λ > 0.
Then, the integrated variance of both (1) and (2) is equal to λ

∫

A
|b(x, h)∩A|−1 dx. The bias of

the Berman–Diggle estimator is zero, whereas (2) is biased unless
∫

b(x0,h)∩A
|b(x, h)∩A|−1 dx =

1. So, in general, (1) will be preferred.
Next, let Φ be a Poisson process on A with intensity function λ(x) = λ |b(x, h)∩A|, for some

λ > 0. Then, (2) is unbiased with integrated variance λ |A|. Write

m(x0) :=

∫

b(x0,h)∩A

|b(x, h) ∩ A|

|b(x0, h) ∩ A|2
dx.

Then, E ̂λBD(x0) can be expressed as λ(x0)m(x0), so its integrated squared bias is zero if and
only if m(x0) = 1 for almost all x0 ∈ A. The integrated variance of (1) is λ

∫

A
m(x0) dx0 which

reduces to λ|A| if m(x0) = 1 for almost all x0 ∈ A so that the estimators are indistinguishable.
Otherwise the mass preserving kernel estimator should be preferred since

∫

A
m(x0) dx0 ≥ |A|.

4 Delaunay tessellation field estimator

Suppose that realisations of the point process Φ are almost surely in general quadratic position,
that is, no d + 2 points are located on the boundary of a sphere and no k + 1 points lie in a
k − 1 dimensional affine subspace for k = 2, . . . d. Then the Delaunay tessellation of Φ is well
defined. The union of Delaunay cells containing a point xi ∈ Φ is the contiguous Voronoi cell of
xi in Φ and will be denoted by W (xi | Φ). For further details, see e.g. Møller (1994) or Okabe
et al. (2000).

Note that the tessellation cells described above can be seen as adaptive neighbourhoods of
a point of Φ. In contrast to the balls of fixed radius h used before, the size of the cells depend
on the point process: In densely populated regions, the cells will be small, whereas they tend
to be larger in regions of low intensity. Based on this idea, Schaap and Van de Weygaert (2000,
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2007) introduced the Delaunay tessellation field estimator (DTFE) as follows. For x ∈ Φ ∩ A,

set λ̂D(x) := (d + 1)/|W (x | Φ ∩ A)|, and for any x0 ∈ A in the interior of some Delaunay cell,
define

λ̂D(x0) :=
1

d + 1

∑

x∈Φ∩D(x0|Φ∩A)

λ̂D(x) (3)

by averaging over the vertices of the Delaunay cell D(x0 | Φ ∩ A) that contains x0.
The DTFE preserves total mass and is an adaptive kernel estimator. To see this, write

D(ϕ ∩ A) for the family of Delaunay cells of ϕ ∩ A, and set

g(x0 | x, ϕ) :=

∑

Dj∈D(ϕ∩A) 1{x0 ∈ D◦
j ;x ∈ Dj}

|W (x | ϕ ∩ A)|
,

for x0 ∈ A \ ϕ, x ∈ ϕ, and g(x | x, ϕ) := (d + 1)/|W (x | ϕ ∩ A)| if x ∈ ϕ ∩ A. Then λ̂D(x0) =
∑

x∈Φ∩A g(x0 | x, Φ), and, as
∫

A
g(x0 | x, ϕ) dx0 = 1, mass preservation follows. Note that there

is no need for a subjective choice of bandwidth, though at some computational cost.
The first two moments of (3) are given by

E

[

λ̂D(x0)
]

=

∫

A

Ex [g(x0 | x, Φ)] λ(x) dx

E

[

λ̂D(x0)
2
]

=

∫

A2

E
(2)
x,y [g(x0 | x, Φ) g(x0 | y, Φ)] ρ(2)(x, y) dx dy +

∫

A

Ex

[

g2(x0 | x, Φ)
]

λ(x) dx

provided the second order factorial moment measure of Φ exists as a locally finite measure that
is absolutely continuous with respect to the product Lebesgue measure with Radon–Nikodym

derivative ρ(2). Here Ex (E
(2)
x,y) denotes expectation with respect to the Palm distribution of Φ

at x (the two-fold Palm distribution at x, y). If Φ is a Poisson process with intensity function
λ(·), P !

x = P and ρ(2)(x, y) = λ(x) λ(y). The result should be compared to its kernel estimation
counterpart.

Finally, assume that Φ is a stationary Poisson process on Rd. Then, (3) is unbiased with
variance cdλ

2. The constant cd depends on the dimension. For example if d = 1, c1 = 2 (2 −
π2/6) ≈ 0.7. Since the Berman–Diggle estimator is unbiased with variance λ ω−1

d h−d, where ωd

is the volume of the unit ball, it is more efficient than (3) whenever EN(b(0, h)) > 1/cd. Hence on
the line, (1) is the better choice if EN((−h, h)) = 2λh > 1.4. For comparison, the computation
of (3) in this case requires four points. Simulations by the author indicate that DTFE would
be preferred for strongly oscillating intensity functions in contexts where peak preservation is
important; for mildly fluctuating intensity functions, kernel estimation seems more efficient.
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